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Abstract. We propose a first principles computation of the thermodynamics of simple fragile
glasses starting from the two-body interatomic potential. A replica formulation translates this
problem into that of a gas of interacting molecules, each molecule being build ofm atoms, and
having a gyration radius (related to the cage size) which vanishes at zero temperature. We use a
small cage expansion, valid at low temperatures, which allows us to compute the cage size, the
specific heat (which follows the Dulong–Petit law) and the configurational entropy.

Take a three-dimensional classical system consisting ofN particles, interacting by pairs through
a short range potential. Very often this system will undergo, upon cooling or upon density
increasing, a solidification into an amorphous solid state—the glass state. The conditions
required for observing this glass phase is the avoidance of crystallization, which can always be
obtained through a fast enough quench (the meaning of ‘fast’ depends very much on the type
of system) [1]. There also exist potentials which naturally present some kind of frustration
with respect to the crystalline structures and therefore solidify into glass states, even when
cooled slowly—such is the case for instance of binary mixtures of hard spheres, soft spheres
or Lennard-Jones particles with appropriately different radii. These have been studied a lot in
recent numerical simulations [2–6].

Our aim is to compute the thermodynamic properties of this glass phase, using the
statistical mechanical approach, namely starting from the microscopic Hamiltonian. The
general framework of our approach finds its roots in old ideas of Kauzman [8], Adam and Gibbs
[9], which received a boost when Kirkpatricket al underlined the analogy between structural
glasses and some generalized spin glasses [10]. In this framework, which should provide a good
description of fragile glass-formers, the glass transition, measured from dynamical effects, is
associated with an underlying thermodynamic transition at the Kauzman or Vogel–Fulcher
temperatureTK . This ideal glass transition is the one which should be observed on infinitely
long time scales [1]. This transition is of an unusual type, since it presents two apparently
contradictory features: (1) The order parameter is discontinuous at the transition: defining the
order parameter as the inverse radius of the cage seen by each particle, it jumps discontinuously
from 0 in the liquid phase to a finite value in the glass phase. (2) The transition is continuous
(second order) from the thermodynamical point of view: the free energy is continuous, and the
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transition is signalled by a discontinuity of the specific heat which jumps from its liquid value
aboveTs to a value very close to that of a crystal phase below. These properties are indeed
observed in generalized spin glasses [11]. The problem of the existence or not of a diverging
correlation length is still an open one [12].

This analogy is suggestive, but it also hides some very basic differences, like the fact that
spin glasses have quenched disorder while structural glasses do not. The recent discovery of
some generalized spin glass systems without quenched disorder [13] has given credit to the idea
that this analogy is not fortuitous. The problem was to turn this general idea into a consistent
computational scheme allowing for some quantitative predictions. Important steps in this
direction were invented in [16] and [17], which showed the necessity of using several copies
of the same system in order to define properly the glass phase. In a previous preliminary study,
we used some of these ideas to estimate the glass temperature, arriving from the liquid phase
[23]. Here we concentrate instead on the properties of the glass phase itself, and particularly
its properties at low temperatures.

The Hamiltonian of our problem is simply given by:

H =
∑

16i6j6N
v(xi − xj ) (1)

where the particles move in a volumeV of ad-dimensional space, andv is an arbitrary short
range potential. We shall take the thermodynamic limitN ,V →∞ at fixed densityρ = N/V .
For simplicity, we do not consider here the description of mixtures, which is presumably an
easy generalization. The main obstacle to a study of the glass phase is the very description of
the amorphous solid state. In principle one should give the average position of each atom in
the solid, which requires an infinite amount of information. Had we known this information,
we could have added to the Hamiltonian an infinitesimal but extensive pinning field which
attracts each particle to its equilibrium position, sendingN to infinity first, before taking the
limit of zero pinning field. This is the usual way of identifying the phase transition. In order to
get around the problem of the description of the amorphous solid phase, a simple method has
been developed in the spin glass context—although one does not know the conjugate field, the
system itself will know it, and the idea is to consider two copies (sometimes called ‘replicas’)
of the system, with an infinitesimal extensive attraction. In the spin glass case this is a very
nice method which allows us to identify the transition temperature from the fact that the two
replicas remain close to each other in the limit of vanishing coupling [24, 25].

However, this method is too naive and needs to be modified for the case of glasses. The
reason has to do with the degeneracy of glass states. This property can be studied in detail in
generalized spin glass mean field models [14, 15]. For structural glasses, this is a conjecture
which we shall make, on the basis of its agreement with the phenomenology of glasses [6]. Let
us assume that we can introduce a free energy functionalF(ρ) which depends on the density
ρ(x) and on the temperature. We suppose that at sufficiently low temperature this functional
has many minima (i.e. the number of minima goes to infinity with the numberN of particles).
Exactly at zero temperature these minima coincide with the minima of the potential energy as
function of the coordinates of the particles. Let us label them by an indexα. With each of
them we can associate a free energyFα and a free energy densityfα = Fα/N . The number
of free energy minima with free energy densityf is supposed to be exponentially large:

N (f, T ,N) ≈ exp(N6(f, T )) (2)

where the function6 is called the complexity or the configurational entropy (it is the
contribution to the entropy from the existence of an exponentially large number of locally
stable configurations), which is not defined in the regionsf > fmax(T ) or f < fmin(T ),
whereN (f, T ,N) = 0, and is supposed to go to zero atfmin(T ), as found in all existing
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models so far. In the low temperature region the total free energy of the system(fS) can be well
approximated by the sum of the contributions to the free energy of each particular minimum:

Z ≡ e−βNfs =
∑
α

e−βNfα '
∫ fmax

fmin

df e−N [βf−6(f,T )] (3)

which shows that the minima which dominate the sum are those with a free energy densityf ∗

which minimizes the quantity8(f ) = f −6(f, T )/β. The Kauzman temperatureTK is that
below which the saddle point sticks at the minimum:f ∗ = fmin(T ). It is the only temperature
at which there exists a thermodynamic singularity. Another characteristic temperature is the
so-called dynamical temperatureTD: for TD > T > TK the free energy is still given the fluid
solution with constantρ and at the same time the free energy is also given by the sum over
the non-trivial minima [16, 17], andf ∗ lies inside the intervalfmin, fmax . The system may
stay in one of the many possible minima. The entropy of the system is thus the sum of the
entropy of a typical minimum and of6(f ∗, T ), which is the contribution to the entropy from
the exponentially large number of microscopical configurations. It is not obvious why this is
equal to the liquid free energy. In this regime, the time to jump from one minimum to another
minimum is quite large: it is an activated process which is controlled by the height of the barriers
which separate the different minima. The correlation time will become very large belowTD
and for this reasonTD is called the dynamical transition point. It is also the mode-coupling
transition temperature [20–22]. The real divergence of the correlation time appears atTK .

In order to obtain quantitative information on the behaviour of the system it is useful to
consider the thermodynamics ofm replicas which are constrained to stay in the same minimum
[17]; this can be done introducing an extensive attraction among replicas which eventually goes
to zero. In the same notation as before partition function is:

Zm =
∫ fM

fm

df e−N [mβf−6(t,T )] (4)

which obviously coincides with the previous one form = 1. In the limit wherem → 1
the corresponding partition functionZm is dominated by the correct saddle pointf ∗, when
the temperature is in the rangeTK < T < TD. For T < TK , the saddle pointf ∗ sticks at
f ∗ = fmin(T ) and the replicated free energyFm = − log(Z)/(βm) is maximum at a value
of m = m∗ smaller than one. One can use expressions valid in the liquid phase (i.e. high
temperature formulae) to evaluate the free energyFm atm < m∗. We shall write down more
explicit formulae in our case below. Notice that the ‘replicas’ which we introduce here play a
slightly different role compared to the ones used in disordered systems: there is no quenched
disorder here, and no need to average a logarithm of the partition function. ‘Replicas’ are
introduced to handle the problem of the absence of description of the amorphous state. We do
not know of any other procedure to characterize an amorphous solid state in the framework of
equilibrium statistical mechanics. There is no ‘zero replica’ limit, but there is, as in disordered
systems, an analytic continuation in the number of replicas. We shall see that this continuation
looks rather innocuous. An alternative method is to introduce a real coupling of the system
to another system which is thermalized [16]; this has been used recently in order to study the
glass phase [5, 18].

Let us turn to a more explicit implementation of these ideas. The original partition function,
for N undistinguishable particles, is:

Z = 1

N !

∫ N∏
i=1

(ddxi) exp

(
− β

∑
16i<j6N

v(xi − xj )
)
. (5)

We introducem replicas of each particle, and computeZm, in the presence of an infinitesimal
pinning field which is an attractive potential between them. This attractive potential
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φ(xi, . . . , xN) should not break the undistinguishability of allN particles with the same replica
index. We have found it convenient to use the attractive potential:

exp(−βφ(xi, . . . , xN)) = 1

N !

∑
{πa∈SN }

exp

(
− β

∑
i

∑
a,b

w(xaπa(i) − xbπb(i))
)

(6)

wherew is a small attractive potential which is short range (the range should be less than the
typical interparticle distance in the solid phase), but its precise form is irrelevant. We then
obtain a ‘replicated’ partition function:

Zm = 1

N !

∫ N∏
i=1

m∏
a=1

(ddxai ) exp

(
− β

∑
16i<j6N

m∑
a=1

v(xai − xaj )− β
N∑
i=1

m∑
b=1

w(xai − xbj )
)
.

(7)

A finite w gives rise to the formation ofmolecular bound statesof m atoms. The
appearance of the glass states(T 6 TD) is signalled by the fact that these molecules still
exist in the limit limm→1limw→0limN→∞ (notice the order of limits). According to the above
discussion, the ideal glass transition (TK ) is detected from the existence of a maximum of the
replicated free energyFm = − log(Z)/(βm) at a value ofm less than one. This is a well
defined mathematical problem, which fully describes our general strategy for computing the
thermodynamics of the glass state. Of course this cannot be done without resorting to some
approximation schemes. We shall now develop one of them, a kind of harmonic expansion in
the solid phase, but several other approximation schemes can be developed [26].

We are interested in the regime of low temperatures where the molecules will have a
small radius, justifying a quadratic expansion ofv (we work here with a regular potentialv(r),
excluding hard cores). We thus write the partition function in terms of the centre of mass and
internal variableszi , uai , with xai = zi +uai and

∑
a u

a
i = 0, expand the energy to second order

in u and integrate over these quadratic fluctuations, leading to:

Zm = mNd/2
√

2π
Nd(m−1)

N !

∫ N∏
i=1

dzi exp

(
− βm

∑
i<j

v(zi − zj )− m− 1

2
Tr log(βM)

)
(8)

where the matrixM, of dimensionNd ×Nd, is given by:

M(iµ)(jν) = δij
∑
k

vµν(zi − zk)− vµν(zi − zj ) (9)

andvµν(r) = ∂2v/∂rµ∂rν (the indicesµ andν, running from 1 tod, denote space directions).
We have thus found an effective Hamiltonian for the centres of masszi of the molecules,
which basically looks like the original problem at the effective temperatureT ∗ = 1/(βm),
complicated by the contribution of vibration modes. We shall proceed by using a ‘quenched
approximation’, i.e. neglecting the feedback of vibration modes onto the centres of mass. This
approximation becomes exact close to the Kauzman temperature wherem → 1. The free
energy is then:
βFm

N
= − d

2m
log(m)− d(m− 1)

2m
log(2π)− 1

mN
logZ(T ∗) +

m− 1

2m
〈Tr log(βM)〉 (10)

where the partition functionZ(T ∗) is simply that of the usual monatomic liquid at the effective
temperatureT ∗, and the expectation value〈.〉 is the Boltzmann expectation value at this same
temperature.

Let us notice that the condition for identifying the Kauzman temperature,∂βFm
∂m
|m=1 = 0,

reads in our harmonic approximation:

Sliq = d

2
log(2πe)− 1

2
〈Tr log(βM)〉. (11)
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Sliq is the entropy of the liquid at the effective temperatureTeff which equalsT for m = 1.
The right-hand side of this equation is nothing but the entropySsol of an harmonic solid with
a matrix of second derivatives given byM. Thus we have found:

∂βFm

∂m

∣∣∣∣
m=1

= Sliq − Ssol . (12)

If Sliq < Ssol one lies in the glass phase (T < TK ), while in the other case,Sliq > Ssol , the
temperature is greater thanTK (and of course less thanTD if the spectrum ofM is positive).
The complexity is thenSc = Sliq − Ssol , as expected on general grounds [17].

The harmonic expansion makes sense only ifM has no negative eigenvalues, which is
natural since it is intimately related to the vibration modes of the glass. Notice that here we
cannot describe activated processes, and therefore we cannot see the tail of negative eigenvalues
(with number decreasing as exp(−1/T ) at low temperatures), which is always present. It is
known however that the fraction of negative eigenvalues ofM becomes negligible below the
dynamical transition temperatureTD [27]. So our harmonic expansion makes sense if the
effective temperatureT ∗ is less thanTD.

Computing the spectrum ofM is an interesting problem of random matrix theory, in a
subtle case where the matrix elements are correlated. Some efforts have been devoted to such
computations in the liquid phase where the eigenmodes are called instantaneous normal modes
[27]. It might be possible to extend these approaches to our case. Here we shall rather propose
a simple resummation scheme which should be reasonable at high densities–low temperatures.
Considering first the diagonal elements ofM, we notice that in this high density regime there
are many neighbours to each point, and thus a good approximation is to neglect the fluctuations
of these diagonal terms and substitute them by their average value. We thus write:

〈Tr log(βM)〉 = Nd log(βr0) +

〈
Tr log

(
δij δµν − 1

r0
vµν(zi − zk)

) 〉
(13)

where

r0 = 1

d

∫
ddrg(r)1v(r) (14)

andg(r) is the pair correlation in the liquid at the effective temperatureT ∗. In principle the
spectrum at this stage still depends onall the correlation functions of the liquid atT ∗, as can be
seen from an expansion of (13) in powers of 1/r0. A simple ‘chain’ approximation, involving
only the pair correlation, consists of approximating in each term of order larger than 2 in this
expansion the full correlation by a product of pair correlations:∫

dx1 . . .dxpg(x1, . . . , xp)vµ1µ2(x1− x2) . . . vµp−1µp(xp−1− xp)vµpµ1(xp − x1)

'
∫

ddk

(2π)d

(
a(k) +

d − 1

d
b(k)

)p
+ (d − 1)

∫
ddk

(2π)d

(
a(k)− 1

d
b(k)

)p
(15)

where the functionsa andb are defined by:∫
ddrg(r)vµν(r) eikr ≡ δµνa(k) +

(
kµkν

k2
− 1

d
δµν

)
b(k). (16)

This chain approximation selects those contributions which survive in the high density limit;
systematic corrections could probably be computed in the framework of the approach of [28]:
we leave this for future work. Here and in what follows, we have not written explicitly the
density: we choose to work with unit density and vary the temperature (density and temperature
variations are directly related in soft sphere systems onto which we focus below).
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The free energy within the chain approximation is:

βFm

N
= − d

2m
log(m)− d(m− 1)

2m
log(2π)− 1

mN
logZ(T ∗) +

d(m− 1)

2m
log(βr0)

+
(m− 1)

2m

∫
ddk

(2π)d

(
L3

(
a(k) + d−1

d
b(k)

r0

)
+ (d − 1)L3

(
a(k)− 1

d
b(k)

r0

))

− (m− 1)

4m

∫
ddrg(r)

∑
µν

vµν(r)
2

r2
0

(17)

where the functionL3 is defined as:

L3(x) = log(1− x) + x + x2/2. (18)

We can thus compute the replicated free energyFm solely from the knowledge of the free
energy and the pair correlation of the liquid at the effective temperatureT ∗. We have done this
computation in the case of soft spheres in three dimensions withv(r) = 1/r12, using the free
energy and pair correlation function of the liquid given by the HNC approximation (obviously
one could try to use better schemes of approximation for the liquid, depending on the form
of v(r), in order to improve the results; our point here is not to try to obtain the most precise
results, but to show the feasibility of a quantitative computation of glass properties using the
simplest approximations). We find (always at unit density) a Kauzman temperature, obtained
from the vanishing of (12), which isTK ' 0.194. When converted into the usual dimensionless
parameter0 = ρT −1/4, this gives0K ' 1.51 which is close to the glass temperature (0 ∼ 1.6)
observed in simulations [7] with very fast cooling to avoid crystallization. Simulations done on
binary mixtures (which do not crystallize) give a similar value for0. At the level of precision
we have now reached, one will need both to do the theoretical computation for mixtures and
also to perform careful simulations in order to disentangle the values ofTK andTD.

In figure 1 we show the values of the inverse effective temperature (1/T ∗ = βm) and of the
square cage radiusA, defined asA = 1

3(〈x2
i 〉−〈xi〉2). This square cage radius has been obtained

by using in (7) as attractive potential:w(r) = r2/(4βS), and differentiating the free energy:

A = 2

d(m− 1)N

∂(βF)

∂(1/S)
(S = ∞). (19)

Notice that the effective temperature varies very little in the whole glass phase and remains
close to the Kauzman temperature, while the square cage radius is nearly linear in temperature
in the whole glass phase, which is natural since non-harmonic effects have been neglected.
The value ofA at the Kauzman temperature isA ∼ 2.5× 10−3. This corresponds to a typical
lateral displacement of the particle in each direction of order

√
A ∼ 0.05, which is 0.045 of

the mean interparticle distance, a value which gives the correct order of magnitude for the
Lindeman ratio.

In figure 2 we give the result for the specific heat in the glass phase versus the temperature.
We see that it closely follows the Dulong–Petit law. This is the result that one should obtain
since we study a solid phase in the classical framework. Notice that it is not at all trivial to
derive this law from first principles in the glass phase. It is interesting to see it coming out
naturally from our computations: although we are basically using the properties of the liquid
at the effective temperatureT ∗, the fact that the optimal number of replicasm vanishes linearly
with T at low temperatures naturally gives the Dulong–Petit law.

From the knowledge ofFm as a function ofm, we can compute the configurational entropy
as function of the free energy. In figure 3 we plot the result for6(f ) versusf at three different
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Figure 1. The full line gives the inverse effective temperature 1/T ∗ = βm of the reference liquid
as a function of the temperatureT in the glass phase. The Kauzman temperature isTK ' 0.194.
The dashed line gives the square cage radiusA divided by the temperature and multiplied by 100.

Figure 2. The internal energy (full line) and the specific heat (dashed line) of the glass versus
the temperature derived from our analytic computation. The specific heat value is close to the
Dulong–Petit value of 3/2 and reaches this value in the zero temperature limit.

temperatures. We see that the curves are roughly parallel to each other, the main effect of the
temperature changes being a shift in thef axis.

As discussed above (see (3)), the value of the configurational entropy at equilibrium is
zero forT < TK . It becomes non-zero aboveTK , where the saddle point inm is atm = 1.
In figure 4 we plot the equilibrium configurational entropy versus the temperature. It will be
interesting to try to compare it with numerical simulations.
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Figure 3. The configurational entropy6(f ) versus the free energy, computed analytically at
temperaturesT = 0.05, 0.1, 0.15, from right to left.

Figure 4. The equilibrium configurational entropy6 versus the temperature. It departs from zero
above the Kauzman temperature.

To summarize, we have developed a well defined scheme for the analytic study of the
thermodynamics of the glass phase. The basic knowledge one needs is the detailed properties
of the liquid (particularly the instantaneous normal modes) close to the glass transition. We
have shown that an implementation of this scheme with rather simple approximations leads
to very reasonable results. We hope to be able to refine these approximations in the near
future in order to obtain very precise predictions. The extension of this approach to dynamical
properties is also a fascinating perspective.
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